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Abstract 

In a previous paper, the SU(2) Kepler problem was defined and shown to admit the symmetry 
group SU(4) for negative energies. This paper is a continuation of the previous one, giving the 
quantization of the SU(2) Kepler problem. In the complex vector bundle associated with an SU(2) 
bundle Iw* - (0) -+ Iw5 - [O), an extension of the Hopf bundle S7 -+ S4, the quantized SU(2) 
Kepler problem is defined and analyzed along with its eigenvalues and symmetry. This system, a 
generalization of the hydrogen atom in five dimensions, describes the motion of a particle with 
isospin in Yang’s monopole field together with the Coulomb potential and a centrifugal potential. 
It will be shown that the quantized SU(2) Kepler problem of negative energy admits a symmetry 
group SU(4) 2 Spin(6), which is indeed represented unitarily in the negative energy eigenspaces. 
The infinitesimal generators of the symmetry are found in an explicit form for all energies, negative, 
zero, or positive. Those generators coming from the subgroup Sp(2) 2 Spin(S) provide the angular 
momentum operators and the others are viewed as the Runge-Lenz-like operators. According 
to whether the energy is negative, zero, or positive, the symmetry Lie algebra formed by these 
generators is shown to be SO(~), e(5), or so( 1,5), where e(5) is the Lie algebra of the group of 
motions in UP. 

Subj. Class.: Quantum mechanics 
1991 MSC: 53C80, SlQO5,81R25 
Keywords: Hopf bundle; Complex vector bundle; Kepler problem: Symmetry group 

1. Introduction 

The Hopf bundles have been recognized to have wide application in physics. For example, 
the map S3 + S* or its extension A4 + G3 with k4 := R4 - {0} and fi3 := lR3 - {O) is 
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applied in order to “regularize” the Kepler problem [l-3]. In celestial mechanics, the map 
Q4 + @ is called the KS (Kustaanheimo-Stiefel) transformation [ 11. 

The U( 1) bundle fi4 -+ fi3 is used to discuss the MIC (McIntosh and Cisneros)-Kepler 
problem (41, a generalized Kepler problem, which is defined on T*fi3, the cotangent bundle 
of ti3, in classical case and on L,, the complex line bundle associated with fi4 + I%!~. 
in quantum case [5,6]. In both cases, this system describes a particle moving in Dirac’s 
monopole field along with the Coulomb potential and a centrifugal potential. 

The Hopf bundle S7 -+ S4 and its extension kg + O%’ with Q8 := [w8 - (0) and l@ := 
ll@ - (0) have also physical application. Yang [7] generalized Dirac’s monopole field in @ to 
a monopole field in k5, and showed that the generalized monopole or SU (2) monopole field 
is exactly the BPST (Belavin-Polyakov-Schwartz-Tyupkin) solution [8] to the Yang-Mills 
equation if restricted on S4 (see also [9]). In this article, the SU(2) monopole field on ti8’ is 
referred to as Yang’s monopole field. In classical theory, the bundle kg -+ ti5 was already 
applied in order to define and study the SU(2) Kepler problem and its symmetry [lo]. 

The aim of this paper is to define and study the quantized SU(2) Kepler problem. To 
this end, the article starts with a review of the SU(2) bundle ti8 -+ l@ and proceeds to its 
associated vector bundle &I (I = 0, :, 1 , . . .) by using a unitary irreducible representation 
D’ of SU(2). The quantized confo&al Kepler problem is then defined in fig and will be 
reduced to a quantum mechanical system in El. The reduced system is referred to as the 
quantized SU(2) Kepler problem, which describes a particle of isospin 1 moving in Yang’s 
monopole field together with the Coulomb potential and a centrifugal potential. If I = 0, 
Yang’s monopole field and the centrifugal potential vanish, and hence the quantized SU (2) 
Kepler problem becomes the usual quantized Kepler problem (or the hydrogen atom) in 
five dimensions. The eigenvalues of the quantized SU(2) Kepler problem will be found 
by using the relation between the quantized conformal Kepler problem and the harmonic 
oscillator both defined in fig. Kibler [ 1 l] and Davtyan et al. [ 121 gave also the eigenvalues 
only for I = 0 by using a similar method. 

Yang’s monopole field (or the Yang-Mills field of instanton number one) is known to 
admit the Spin(S) symmetry [ 13-151, in association with which the angular momentum 
operators are defined on the complex vector bundle 81. Yang [7] gave intuitively those 
operators in terms of local coordinates. This paper gives global expression to the angular 
momentum operators. 

It was already shown in the previous paper [lo] that in classical mechanics the SU(2) 
Kepler problem admits the symmetry group SU(4) for negative energies. This article shows 
that the quantized SU(2) Kepler problem admits the symmetry group SU(4) for negative 
energies as well. Further, the infinitesimal generators of the symmetry group SU (4) will 
be given and extended further to differential operators for all energies, positive, zero, and 
negative, which act on cross sections in the vector bundle &I. Those generators coming from 
the subgroup Sp(2) 2 Spin(S) are the angular momentum operators, and the others are 
looked upon as the Runge-Lenz-like operators. 

The organization of this paper is outlined as follows: Section 2 is concerned with the 
SU(2) bundle fig -+ @. The canonical connection on this bundle is treated explicitly. The 
curvature of this connection is Yang’s monopole field on E@. 
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Section 3 deals with the complex vector bundles &I, 1 = 0, $, 1, . . . , which are asso- 
ciated with the SU(2) bundle @ --+ fi5 through unitary irreducible representations D’ of 
SU(2). Cross sections in El are understood as the states of a particle of isospin 1. The linear 
connection associated with the connection dealt with in Section 2 is reviewed together with 
its curvature. 

In Section 4, the standard metric and Laplacian on k8 are both decomposed into the 
“vertical” and the “horizontal” parts in accordance with the connection defined in Section 2. 
The horizontal part of the metric projects to the base space l@ to define a conformally flat 
metric. The decomposition of the Laplacian will make it feasible to express the Hamiltonian 
operator for the quantized SU (2) Kepler problem in the next section. 

In Section 5, the quantized SU (2) Kepler problem is defined in the Hilbert space of square 
integrable cross sections in &I, through the reduction of the quantized conformal Kepler 
problem in eight dimensions. Further, the reduction procedure shows that the eigenvalues of 
the quantized SU (2) Kepler problem can be obtained from those of the quantized conformal 
Kepler problem. incidentally, the negative energy eigenvalues of the quantized conformal 
Kepler problem can be derived by using the relation between the conformal Kepler problem 
and the harmonic oscillator in eight dimensions. Thus the negative energy eigenvalues of 
the quantized SU(2) Kepler problem are obtained. 

Section 6 is concerned with Sp(2) symmetry. The Sp(2) 2 Spin(S) acts on ti8 as a 
group of bundle automorphisms of the SU(2) bundle i%!’ -+ @. A basis of the infinitesimal 
generators of this action is given explicitly, each of which is broken up into the vertical and 
the horizontal parts, according to the canonical connection on ti*. Then these generators 
give rise to operators in the associated complex vector bundle &I, which turn out to be 
the angular momentum operators given locally by Yang [7]. In addition, the second-order 
Casimir operator of the Sp(2) generators is shown to be related with the standard Laplacian 
on the unit sphere S’. 

Section 7 is concerned with a symmetry group for the quantized SU(2) Kepler problem 
of negative energy. For obtaining the symmetry group, the following two facts are crucial. 
The first one is that a practical method for obtaining an energy eigenspace for the quantized 
SU(2) Kepler problem is to form a space of D’-equivariant functions (see Section 3 for 
definition) out of the eigenspace for the quantized conformal Kepler problem and then to 
pass to the corresponding eigenspace of cross sections in &I. The other fact is that SU(8) 

acts on the eigenspace for the quantized conformal Kepler problem of negative energy. 
This results from the relation between the quantized conformal Kepler problem and the 
harmonic oscillator. Therefore, finding a symmetry group for the quantized SU(2) Kepler 
problem of negative energy amounts to finding a subgroup of SU(8) which leaves invariant 
the space of D’-equivariant functions. It will turn out that the subgroup is isomorphic with 
SU(4) g Spin(6), being the symmetry group. 

Section 8 provides first the infinitesimal generators of the symmetry group SU(4) for 
negative energy. These generators are then extended to symmetry operators applicable for 
all energy, which consists of 10 angular momentum operators and five Runge-Lenz-like 
operators. Then it will be shown that the symmetry Lie algebra of the quantized SU(2) 
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Kepler problem is SO(~), e(5),. or SO( 1,5), according to whether the energy is negative, 
zero, or positive, where e(5) is the Lie algebra of the group of motions in lR5. 

In appendices, the infinitesimal generators of Sp(2) discussed in Section 6 and a basis 
of the Lie algebra su(4) are listed in the explicit form. 

2. The SU(2) bundle Ik8 + I@ 

We treat the quaternion algebra H in the 2 x 2 complex matrix form: 

xo + ix’ ; x, E [w, v = 0, 1, 2, 3 
x2 + ix3 

(2.1) 

It is decomposed into a vector space direct sum: 

H 2: R @ su(2), (2.2) 

where R and su(2) stand for the real and the imaginary parts of H, respectively. We choose 
a basis of su (2) to be 

EI = (1 ri). E2=(; ,‘), E3=(oi ai>. (2.3) 

and that of R to be Eu, the 2 x 2 identity matrix. Note also that, for X E H, 

xz = det X, XXT = Ix12Eo, (2.4) 

where x stands for the 4-vector x = (x,) along with the identification of H with R4. We 
denote by the superscript asterisk the Hermitian conjugate. Then, for X, Y E H, a symmetric 
and an anti-symmetric forms are defined from the symmetric and the anti-symmetric parts 
of XY* to be, respectively, 

(X(Y)Eo = ;(XY* + YX’), (2.5) 

y(X. Y) = gxy* - Yx*). (2.6) 

Eq. (2.5) defines the inner product in H 2 R4; one has, indeed, (Xl Y) = C:=, xvyv. Note 
further that y takes values in su (2). Now, let SV (2) be identified with the unit quaternions 
in H. Then SV (2) acts on H. For g E SV(2) and X, Y E H, the above-defined forms are 
subject to the transformation 

(sXlsY) = (XIY), (2.7a) 

y(gX, gY) = Ad,y(X, Y). (2.7b) 

With the above setting, we are going to review the SV (2) bundle SV (2) -+ a8 + @. 
Let SV(2) act on H2 2 lR* diagonally: 

&JR : (X3 n -+ kX, gn. cw 
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For (X, Y) # (0, 0), this action is free and proper, so that I%’ := R8 - (0) is made into 
an SU(2) bundle with base manifold fi8/SU(2) g @. The projection n of a8 to the base 
manifold is realized by 

rr:(X,Y)~(2X*Y,detX-detY)~HxRgR’. (2.9) 

Set rr(X, Y) = (W, 7.~4) E H x I%, where the entries in W are taken as in (2.1). Then, written 
out, Eq. (2.9) gives 

wo 
Wl 

w2 

w3 = 
w4 

0 
0 

(0) 

YO Yl Y2 Y3 

YI -Y0 Y3 -Y2 

Y2 -Y3 -Y0 Yl 

Y3 Y2 -Y1 -Y0 

x0 XI x2 x3 

x3 x2 --Xl -x0 
-x2 x3 x0 -X1 

-x1 x0 --x3 x2 

x0 

-x1 

-x2 

-x3 

-Y0 

Y3 

-Y2 

-Y1 

Xl x2 x3 

x0 -x3 x2 

x3 x0 -X1 

-x2 Xl x0 

-Y1 -Y2 -Y3 

Y2 -Yl -Y0 

Y3 YO -Y1 

YO -Y3 Y2 

fxo 
XI 

x2 

x3 

YO 

Yl 

Y2 

\ Y3 

\ 

. (2.10) 

/ 

This is known also as the Hurwitz transformation [ lf5-181. Further, we obtain, after calcu- 
lation, 

w; = (lx12 + ly1212. 
k=O 

(2.11) 

If we restrict fig to S7 with ]x12 + ]y12 = 1, the SU(2) bundle is contracted to the Hopf 
bundle SU(2) += S7 + S4 on account of (2.11). 

We proceed to the canonical connection defined on the SU(2) bundle fi* -+ h5. Let c 
be a vector in su(2). Then 6 gives rise to a fundamental vector field on #I2 ZZ’ h8; (6X, cY> 
at (X, Y) E $12. By Fa, a = 1,2,3, we denote the fundamental vector fields associated 
with E,, respectively. At every point q E fi*, the vector fields F,, a = 1,2, 3, span the 
vertical subspace of the tangent space T, (kg). The horizontal subspace is defined at every 
point q E kg to be the orthogonal complement with respect to the standard metric 

K, = &dx,)2 + &dy,)‘. 
!J=o v=o 

(2.12) 

Thus a canonical connection is introduced on the bundle A8 -+ fi5. The vector fields F, 

are mutually orthogonal with respect to the metric K. Fortunately, we can extend (F,] 

toanorthogonalsystem(F,,~k],a= 1,2,3,k=0,...,4,0nti8,whereZ&spanthe 
horizontal subspace of T, (lft8) at every point q. The components of these vector fields are 
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given in the table below: 

Ft F2 F3 Ho HI H2 H3 H4 

-X1 -x2 x3 YO Yl Y2 Y3 x0 a/ax0 

x0 -x3 -x2 Yl -YO -~3 ~2 x1 a/ax1 

x3 x0 Xl Y2 Y3 -YO -YI x2 alax2 

-x2 XI -x0 Y3 -Y2 Yl -YO ~3 alax3 

-.w -y2 y3 x0 -x1 -x2 -x3 -y. alay0 

YO -~3 -~2 XI ~0 x3 52 -yl alay1 

~3 YO ~1 ~2 -x3 ~0 x1 -y2 alay2 

-Y2 Yl -YO ~3 x2 -x1 x0 -y3 ajay3 

The mutual inner products of Fa and Hk are expressed, at every point q E as, as 

K,(F,, Fb) = (1~1~ + ly12)fJ,b, a, b = 1,2,3, 

(2.13) 

K,(Fa, Hk) = 0, 

Xq(Hj, Hk) = (1X12 + l_Y12)6jkt j, k = 0,. . . ,4. 

Further, through the projection rr the vector fields F, and Hk project to 

(2.14) 

(2.15) 

respectively. Thus the horizontal lift (a/au&)* of a/at&, the horizontal vector field that 
projects to a/&&, are expressed as 

1 

WI2 + IY 12) 
Hk, k = 0, . . . ,4. (2.16) 

The system ( Fa, (a/aWk)*) also forms an orthogonal system on ti8, which we prefer to use 
below. 

We now turn to the connection form for the canonical connection stated above, which is 
defined to be 

w = y(dX, X) + y(dY, Y) 
b-l2 + IY12 ’ 

(2.17) 

where y is the anti-symmetric form given by (2.6). It is a matter of calculation to show that, 
for a fundamental vector field (6 X, e Y) and for the SU (2) action, 

o(((X, CY)) = C* (2.18) 

@in = Ad,o. (2.19) 

This verifies that w is indeed a connection form [ 191. It is to be noted here that for the radial 
vector (X, Y), w vanishes by the definition (2.17), so that w is contractible to a form on S7. 

Let 

W= &a Eat (2.20) 
a=1 
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where E, is the basis (2.3) of su(2). Then the system of one-forms (ma, rr*dwk} turns out 
to be dual to the system of vector fields (F,, (a/awk)*). 

The curvature form G’ for the connection w is defined as 

Q=dw-wr\w. (2.21) 

We notice here that the minus sign in the definition is due to the left action of the structure 
group. The transformation property of Q is expressed, on account of (2.19), as 

$52 = Ad&?. (2.22) 

With respect to a basis, (a/at&)*, k = 0, 1, . . . , 4, of horizontal vector fields, the compo- 
nents of Q take the form 

J-2 ((f>^t (5%)‘) = -m([(&)*? (i&J*])- (2.23) 

We notice here that 52 is known as Yang’s monopole field on t@’ [7,9]. 

3. The associated complex vector bundles 

Let D’ be a unitary irreducible representation of SU(2) with 1 = 0, i, 1, . . . , and Vl a 
representation space for D’. For g E SU(2), we denote by D’(g) the unitary operator on 
&. A left action of SU(2) on the product space I&’ x VI is defined by 

(9, z) t-+ G&(q), D’(g)z), (4, z) E fig x V/. (3.1) 

This action defines an equivalence relation in h8 x Vl. By kg xl VI we mean the quotient 
space by this equivalence relation. Then the complex vector bundle El = (fig xl Vl, nr, L@‘) 
is defined so that the following diagram may be commutative: 

lQ8 x Vl 41 ti8 X[ V[ 

PI 
1 

UP + @I=’ 
1 (3.2) 

x 

where qr is the natural projection and pt is the projection to the first factor space. 
A map 0 of @’ to n8 xl Vl is called a cross section in 81 if it satisfies ~1 o 0 = id, id 

being the identity map of @. Cross sections in El are viewed as states of a particle of isospin 
1, since each fibre of 81 is isomorphic with V, 2 C 21+1. The cross sections are known to be 
in one-to-one correspondence with the D’-equivariant functions f on fig [19], which are 
defined as &-valued functions on II? satisfying, for g E SU(2) and q E @I8 Z fi2, 

t-(&(q)) = D?df(d. (3.3) 

We denote this correspondence by q1#. Let f = q1#a. Then the cross section r~ is expressed 
as a(~(()) = [(q, f(q))], where the square brackets denote the equivalence class. 
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The vector bundle I[ is endowed with the linear connection associated with the connection 
defined in Section 2. Let 4 be a vector field on l@ and c* the horizontal lift of 4. Then the 
linear connection V in &I is defined for cross sections u through 

(3.4) 

Vt o is referred to as the covariant derivative of 0 with respect to <. We notice here that 
Yang’s monopole field is already minimally coupled, through 06, with the vector field 4 as 
a first-order differential operator. 

The curvature of the connection V is defined for vector fields [ and n on hB5 and a cross 
section D by 

R(t, rib = ([V(? V,l - V[(.o]b. 

Combined with (3.4), the definition (3.5) is expressed as 

R(<. rl)a = s,#-‘([{*, rl*1 - [e? vl*kI1#~. 

(3.5) 

(3.6) 

4. Decomposition of the metric and the Laplacian 

In the preceding sections, we have reviewed the SU(2) bundle l@ + !%’ and its associated 
vector bundles El. We wish to define a quantized SlJ (2) Kepler problem on El. To this end. 
we are to break up in advance the standard metric and the Laplacian on R8 into horizontal 
and vertical parts in accordance with the connection defined in Section 2. The breaking- 
up makes it feasible to express the Hamiltonian operator of the quantized SU (2) Kepler 
problem in an explicit form. 

From (2.14) (2.16) the standard metric K is put in the form 

K = t--&d)’ + $ &c* dwk)2, r= 

a=1 k=O 

(4.1) 

The metric K provides the inner product in the tangent space at each point q of I%’ 2 l@. 
In the cotangent space T,*(i%*), the dual inner product is defined, which we denote by K:. 
Then, we obtain, in the form dual to (2.14), 

K*(d, ob) = &,, 
r 

K*(w“, IT* dwk) = 0, (4.2) 

K*(n* dWk, n* dWj) = kc?kj. 

Now let f be a function on A*. Then the differential df turns out to be expressed as 

3 

df = ~W)w” + 
CZ=l 

(4.3) 
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From (4.2) and (4.3), it follows that 

K*(df, df)= +J)2+4&(&)*i,2. (4.4) 

which is dual to (4.1). 
The metric K projects through n to a metric A on the base space k5; for tangent vectors 

61 and &J to I?.’ at x(q), one has 

An(,)(b, 62) := K&;. t;), (4.5) 

where 6;” and .$; are the horizontal lifts of cl and 42, respectively. This definition is, of 
course, independent of the choice of q in the fibre n-l (x(q)). Eq. (4.1) then provides 

(4.6) 

which shows that A is a conformally flat metric on lk5. Further, we denote by B the induced 
metric on the unit sphere S4; B = A 1 p. Then from (4.6), B is $ times the canonical metric 
on S4. Further, Eq. (4.1) is expressed also as 

3 
K = r ~(co~)~ + i dr2 + rx*B. 

a=1 
(4.7) 

From this it follows that the standard volume element dx dy on $!* with dx = dxu . . . dx3 
and dy = dyu . . . dy3 is put in the form 

dx dy = $r3 dr dS dG, (4.8) 

where dS is the volume element on S4 determined by the metric B, and dG is the volume 
element on SU (2), which is given by dG = 8’ A 82 A f13 together with dgg-’ = c Oa E,. 

We turn to the standard Laplacian A on R*. Then, for a function f of compact support 
on R*, one has 

s 
K*(df, df)dxdy = - 

J 
fAf dxdy. (4.9) 

Iw* I@ 

If we substitute the expression (4.4) for K*( d f, d f) in (4.9), and carry out integration by 
part, we obtain the Laplacian in the form 

A= ~a~(Fa)2+4r~o((~)*)2, (4.10) 

which gives the decomposition of the Laplacian into vertical and horizontal parts. 
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5. The quantized N(2) Kepler problem 

To define the quantized SU(2) Kepler problem, let us be reminded of the quantized 
MIC-Kepler problem [6], which is defined in the complex line bundle associated with the 
U ( 1) bundle k4 -+ k3, through the reduction of the quantized conformal Kepler problem 
on fi4. Since the structure group for the complex line bundle is U(l), we could have called 
the quantized MIC-Kepler problem the quantized U (1) Kepler problem. With this in mind, 
we wish to define, in an analogous manner, the quantized SU(2) Kepler problem in the 
complex vector bundle &I associated with the SU(2) bundle l@ -+ I@, by carrying out the 
reduction procedure for the quantized cpnformal Kepler problem on @. 

5.1. The quantized conformal Kepler problem 

The quantized conformal Kepler problem has the Hamiltonian operator [20] defined by 

K > 0; const., (5.1) 

where A is the standard Laplacian on R8, and r = 1.~1~ + Iy 1’. The quantized conformal 
Kepler problem should be defined on the Hilbert space of square integrable complex-valued 
functions on R* with the inner product [20] 

(f, h) = 1 fh4rdxdy. (5.2) 

RR 

Here and in the below, the overbar indicates the complex conjugate. It is an easy matter 
to show that the Hamiltonian (5.1) is a symmetric operator in C,“(R’) with respect to the 
inner product (5.2). Quite recently, Trunk [21] introduced the Hurwitz-Kepler problem, the 
Hamiltonian of which takes the form of H^ plus some operators concerning SU(2). 

The operator (5.1) is linked with the harmonic oscillator Hamiltonian operator 

2~. = --;A + $h2r (5.3) 

with A a real constant, through the relation 

4r(G + V) = z* - 4K. 8 (5.4) 

By using this relation, negative energy eigenvalues for H^ are obtained as follows: For H^ 
given, consider E,J with a parameter h. Let us assume that an eigenvalue of 2~ equals 
4~. Then H^ must have an eigenvalue - $h2. Since the eigenvalues of 2~ are given by 
h(n + 4), II = 0, 1,2, . . . , one has the relation 

h(n + 4) = 4K, (5.5) 

so that - 1 A2 turns out to be 8 

2K2 
J&, := -~ 

(n + 4j2 ’ 
n=0,1,2,... 

Further, Eq. (5.4) implies the following result. 

(5.6) 
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Lemma 5.1. The eigenjiinctions of E* with h = 4K/(n +4) are those of H^ associated with 
the eigenvalue E, given by (5.6). 

We denote by S(E,) the eigenspace for the quantized conformal Kepler problem of 
negative energy E, . 

5.2. The quantized SU (2) Kepler problem 

The quantized conformal Kepler problem can be reduced by letting the Hamiltonian 
operator H^ act on the space of D’-equivariant functions. Let Vt be a carrier space for D’. 
We are to endow the space of cross sections in El with an inner product structure. Let 01 
and 02 be cross sections corresponding to D’-equivariant functions ft and f2, respectively, 
and let ( ( ) denote a Hermitian inner product on VI with respect to which D’(g) are unitary 
for all g. Then the function (ft lf2) = (q1#al [q1#a2) on ll%* is invariant under the SU(2) 
action, so that it can be viewed as a function on @‘. On the other hand, the standard volume 
element of @, denoted by dw, is expressed as dw = 16r4 dr dS, where dS is the volume 
element on S4 determined by the metric B. Then, from (4.8) one has 4r dx dy = i dG dw, 
so that the inner product of ot and 02 is defined as 

(5.7) 

where we have used the fact that the volume of SU(2) is 2rr2 with respect to dG. We denote 
by rl the Hilbert space of square integrable cross sections with respect to the inner product 
(5.7). 

We now proceed to reduce the Hamiltonian operator (5.1) in order to obtain a Hamiltonian 
operator acting on rl. Making use of the decomposition (4.10) together with 

Pa = F,/2i, i = J-1, (5.8) 

we put H^ in the form 

(5.9) 

Let f be a D’-equivariant function. Then by differentiating at t = 0 both sides of (3.3) with 
g = exp( i t E,), we obtain 

Elf = [Elf? (5.10) 

where [ Fa] denotes the representation matrix of Fa. Since Ci=, [FQ12 equals E(I + 1) times 
the identity matrix, one has 

k-2 
(Fa) f =lU + l)f. (5.11) 

a=1 
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From (3.4) (5.9), and (5.1 l), the reduced Hamiltonian operator El defined by 

261 

ii, = qp-’ H^qp 

turns out to be expressed as 

(5.12) 

(5.13) 

where Vk = Valawk, k = 0, . . ,4. We call the quantum system defined in &I with the 
Hamiltonian operator (5.13) the quantized SU(2) Kepler problem. The operator I?, is re- 
garded as the quantization of the classical Hamiltonian for the SU (2) Kepler problem I lo]. 
We note again that Yang’s monopole field is minimally coupled in the covariant differential 
operators Vk. If 1 = 0, @ becomes the usual Hamiltonian operator for the quantized Kepler 
problem (or the hydrogen atom) in R5. 

Theorem 5.2. By an SU (2) action, the quantized conformal Kepler problem is reduced to 
the quantized SU (2) Kepler problem dejined in the Hilbert space fi of square integrable 
cross sections in &I together with the Hamiltonian Hl given by (5.13). where 1 is a non- 
negative half integer. 

From the definition (5.12), it follows that the negative eigenvalues of E, come from 
those of H^. In fact, if 0 is an eigen-cross section for g/, qfa must be a V/-valued D’- 
equivariant eigenfunction for I?. A question as to how one finds the space of D1-equivariant 
eigenfunctions out of the eigenspace S(E,) will be investigated in Section 7. Further. we 
have to be careful in the parity of 1. As will be shown also in Section 7, n’s are even or odd, 
accordingasl =0.1,2 ,... , or1 = i,i ,... , together with n > 21. Thus we have the 
following theorem. 

Theorem 5.3. Let S(E,; 1) be the space of D’-equivariant eigenfunctions, which is a sub- 
space of the eigenspace for the quantized conformal Kepler problem of eigenvalue E,, = 
-2K2/(n + 4)‘. If n is taken to be even or odd according as 1 is an integer or a half-integer 
together with n 1 21, then S(E,; 1) is in one-to-one correspondence with the eigenspace 

q/ C’ S( E, ; 1) of negative energy E, for the quantized SU (2) Kepler problem. 

In conclusion, we notice that the eigenvalues E, are obtained by solving the eigenvalue 
problem as well. Let h be an eigenfunction of the spherical Laplacian A7 on S7; A7h = 
-p(p + 6)h, p = 0, 1,2, . . We assume that a function f = @(r)h is an eigenfunction 
which solves the equation H^f = Ef. Then we obtain the equation for 4(r), 

(5.14) 

If p is an even number, i.e., p = 2j, j = 0, 1, 2. . . , this equation can be viewed as that 
for the hydrogen atom in five dimensions. The negative eigenvalues resulting from (5.14) 
with p = 2 j are already known [22] to be 
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(5.15) 

This result coincides with (5.6) under the condition that 12’s are non-negative even numbers, 
n = 2j, 2(j + I), 2(j + 2), . . 

6. Kinematical symmetry 

We now wish to consider the angular momentum operators in the complex vector bundle 
&I. Generally speaking, the angular momentum operators are infinitesimal generators of the 
action of a rotation group. In our case, we have to understand how the SO(5) action on 
l@ is represented in the space of cross sections in 81. To this end, we start with the Sp(2) 
action on the SU (2) bundle I%* -+ I?’ as a group of bundle automorphisms [ 13-151. It is 
well known that Sp(2), the group of 2 x 2 quatemionically unitary matrices, is isomorphic 
to Spin(S), the simply connected double cover of SO(5), as Lie groups. 

6.1. The Sp(2) action 

Recall that we treat the SU(2) action on #I* to the left. We are to treat the Sp(2) action 
on %I* to the right, so that it may commute with the SU (2) action. Let 

~1 =xu+ixt, u2 = x2 + ix3, 

UI = YO + iyl, u2=y2+iy3. 
(6.1) 

Then, from (2. l), (X, Y) E I%* is thought of as a pair of quatemions of the form 

--. 
(UI -r?, u1 -a) = (Ul, VI) - (U2, vz)J, (6.2) 

where j is a quatemion unit with the property that j* = - 1 and {j = jr for < E C. Let 

5‘1 = 641, VI>, (2 = (u2, v2) (6.3) 

be row vectors in @*. Then, from (6.2), (X, Y) E H* is represented as a quatemionic row 
vector {I - r2 j in H*. 

Putting a quatemionic 2 x 2 matrix in the form A + Bj with A and B 2 x 2 complex 
matrices, we get the right action of A + Bj on H*, which can be expressed as 

(6.4) 

The quatemionic unitarity condition, (A + Bj)(A + Bj)* = 12, implies that 

AA* + BB* = 12, BAT - ABT = 0, (6.5) 

where 12 is the 2 x 2 identity matrix, and the superscript asterisk * and T indicate the Her- 
mitian conjugate and the transpose, respectively. Thus Sp(2) is represented in the complex 
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matrix form in (6.4) under the conditions (6.5). Accordingly, the action of the Lie algebra 
sp(2) of Sp(2) is put also in the form 

From this, a system of linearly independent infinitesimal generators Lij, i, j = 0. . . . (4, of 
Sp(2) are obtained, which are listed in Appendix A. We give here the commutation relations 
only, 

[Lij, Ljkl = 2Lik (i # k), [Lij, Lkll = 0 (# i, j. k, I). (6.7) 

6.2. The angular momentum operators 

Since the action of Sp(2) commutes with that of SU(2), it projects to an action on @ 
through the projection rr : k8 + ft5. However, since (X, Y) and (-X, -Y) in $I* 2 h8 
project to the same point in I@, the action induced on l&” is that of SO(5) 2 Spin(S)/Z?. 
Therefore, to deal with the angular momentum operators as infinitesimal generators of 
S 0 (5) acting on k5, we are to treat the Sp(2) action on l’%’ and then to proceed to the induced 
action on the vector bundle El. Because of the commutativity of Sp(2) and SU (2) actions on 
l@‘, the D’-equivariance of a &-valued function on kg is preserved under the Sp(2) action. 
Hence, the Sp(2) action is represented in the space of cross sections in &, so that the angular 
momentum operators are defined to be infinitesimal generators of this Sp(2) action on &l. 

Let the infinitesimal generators Ljk on fi8 be broken up into 

~jk~2(~j(&)*-~k(&)*)+2r2[(&)‘.(&)*]. (6.8) 

which can be verified by straightforward calculation along with (2.16). The angular mo- 
mentum operators then turns out to be given by 

Ajk := 4, #-‘~Ljkqi# = Wjvk - wkvj i- r*R (6.9) 

where use has been made of (3.4) and (3.6). These are global expressions of the angular 
momentum operators that Yang [7] gave in terms of local coordinates. 

In conclusion, we define a second-order Casimir operator to be 

L= = c L$. (6.10) 
jtk 

This operator and the standard Laplacian, A7, on the unit sphere S7 are related in the 
following manner. Let A7 be put in terms of the Cartesian coordinates: 

~7=~l~12+l~12$&3*+(~)*) 

- 2 a a;)]2-6f+v&+i~$)2. 

[ ( 

&ax + Y”- 
v=o ” ” v=o 

(6.1 1) 
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Then, a straightforward calculation using (2.13), (6. lo), and (6.11) results in 

3 
L2 - c F,2 = Al, 

a=l 
(6.12) 

which was suggested in [23]. 

7. Dynamical symmetry 

In Theorem 5.3, we have referred to the space, S(E,; 1), of D’-equivariant functions 
which is a subspace of the eigenspace S(E,) for H^. In this section, we show that S(E,; I) 
can be actually formed out of the eigenspace S(E,) and further consider what group acts 
on S( En ; I). In order to form S( E, ; l), we have only to pick up carrier spaces for D’ out of 
the eigenspace S(E,) of H^. 

7.1. Picking up carrier spaces for D’ 

In view of the close relation (5.4) between the quantized conformal Kepler problem and 
the harmonic oscillator, we are first to pick up carrier spaces for D’ out of the eigenspace 
for the harmonic oscillator. Let 

where v = 0, . . . (3. Further, set 

1 
A: = z(aA - ial), 

A : = $(a; - ia:), 

Ai = -$(a” + ia:), 

Ai = $(a” + ia:), 

A: = $(bi - ibl), 

AL = -&(bi - ibi), 

1 
A: = -z(b; + ibl), 

Ai = $(bA + ibl), 

(7.1) 

(7.2) 

and let Ak, k = 1,2, . . . , 8, be the dual operators to A:, respectively. These operators are 
creation and annihilation operators satisfying the canonical commutation relations, 

[Ak,AJ]=Skj, k,j=l,..., 8, (7.3) 

with the others vanishing. In terms of Al, the eigenfunctions of the harmonic oscillator & 
are expressed as 



7: Iwai, 7: Sunako/Journal of Geometry and Physics 20 (1996) 250-272 

(n!)-“2(A~)“‘(A~)“2(A:)“‘(A:)““(A:)”S(A~)~~(A~)n7(A~)fl8~O), 
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n! := nl!...ng!, (7.4) 

where IO) is the normalized ground state. These functions form a complete basis of L2(R8). 
The SU(2) action on H2 Y R8 given by (2.8) is represented unitarily in L2(R8): 

(U,,f)(q) := f(Q(q))’ 9 E RS3 R E SU(2). (7.5) 

From the definitions (7.1) and (7.2), the U, induces linear transformations on the operators 

Al as follows: 

URA’U;’ = diag(gT, gT, gT, gT)At, (7.6) 

where At = (A:, Al, . . , A$T is a vector of operators, and the diag(.) is a block diagonal 
8 x 8 matrix. On inserting the right-hand sides of (7.6) into (7.4) and expanding the resultant 
operator polynomial, the action of U, is represented with respect to the basis functions (7.4). 
Then, one finds that the eigenspace designated by n = nt + n2 + . . + ng includes the 
carrier space for the tensor product representation 

(7.7) 

with 

rzl+n2=pI,n3+n4=p2, 

n5 + % = P3, n7 + n8 = p4. PI + p2 + p3 + p4 = n. (7.8) 

Decomposing the tensor product (7.7) into a Clebsch-Gordan series, we obtain a series of 
irreducible representations designated by the numbers of the form 1 := ~PI - N, where N’s 
are non-negative integers. Thus we have 

n = 2N + 21. (7.9) 

On account of (7.6) and the Clebsch-Gordan series, basis functions fm ([ml 5 I) in the 
carrier space for D’ are subject to the transformation 

.fm(&(q)) = c .Mq)D:,(~-I), 4 E R8. (7.10) 
lkl~~ 

The right-hand side of (7.10) defines a left SU(2) action on the carrier space, which is 
denoted by (D’(g)f,)(q). Thus the carrier space for Dt turns out to be a space of Dt- 
equivariant functions. Hence we have the following. 

Lemma 7.1. Possible carrier spaces for the representation of SU (2) in the eigenspace of 
the harmonic oscillator assigned by n are spaces of D'-equivariant functions, where 1 is an 
integer or a half-integer according as n is even or odd, together with n > 21. We have to 
note also that each eigenspace designated by n is decomposed into a direct sum of spaces 
of Dt-equivariantfunctions with suitable l’s, 0 5 1 5 in. 
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7.2. SU(4) symmetry 

According to Iwai [24], SU(8) acts on L2(R8) unitarily as follows: let WC be a unitary 
operator corresponding to a matrix G in SU (8). The action of WG on a base function f in 
(7.4) is then given by 

WGf(q) = (n!)-‘/2(GTAt)~‘(GTAt)‘;2 . . . (GTAt)~‘[O), (7.11) 

where (GTA+)j, j = 1,. . . , 8, denotes the jth component of the vector, GTAt, of opera- 
tors. Note that the WC induces the transformation of At, 

WGA+W;’ = GTA+. (7.12) 

We mention here that Eq. (7.12) covers Eq. (7.6). In fact, for G = diag(g, g, g, g) with 
g E SU(2), WC becomes U,. 

If we set h = 4~/(n + 4) in (7.1), the functions (7.4) become eigenfunctions of H^ with 
eigenvalue E, on account of Lemma 5.1, and therefore WC gives rise to an action of SU (8) 
on the eigenspace S(E,) for the quantized conformal Kepler problem of eigenvalue E,. 
We denote this action by WC’ := WC Is(E,,), which can be shown to be a unitary operator 
on S(E,) with respect to the inner product (5.2). The proof can be made through the same 
calculation as that in [6]. In an analogous manner, we can define Uf’ := U, Is(E,,) acting on 
S(E,). Further, the eigenspace S(E,) is decomposed into a direct sum of spaces S(E,; 1) 
of D[-equivariant functions. 

Lemma 7.2. For all possible 1, the space S(E,; 1) of D’-equivariant eigenfunctions is an 
invariant subspace for W$’ ifand only if W$” and U, (‘) commute for any g E SU (2). 

Proo$ We notice first that from (7.10) the D’-equivariance is expressed also as Uf) fm 

= D’(g-‘) fm for basis functions fm E S(E,; 1). Suppose W$’ and Uf’ commute. Then, 
we obtain 

(W$fm)(Bs(q))=U;?, W;)fm)(q) = Wj$U;!',fm(q) = W;'D'k)fm(q) 
= W~'~fdq)D:,W' > = ~W$)fd(qP;,,&-') 

lklil lklsl 
=h,W(")f (q) Gm’ (7.13) 

This verifies that Wt’ fm is D’-equivariant, so that S(E,; 1) is an invariant subspace for 

W$‘. Conversely, if S(E,; 1) is invariant under W$’ for all possible 1, then Wt’ and Ur) 
prove to commute on S(E,). This ends the proof. 0 

We are to study what group should act on S(E,; 1). To this end, we are looking for a 
subgroup of SU (8), which consists of SU (8) matrices commuting with all the 8 x 8 matrices 
diag(g, g, g, g), g E SU(2). A straightforward calculation shows that any 8 x 8 matrix 
commutative with diag(g, g, g, g) must take the tensor product form C @ I2, where C = 
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(~~~)~,~=t,...,4, and 12 being the 2 x 2 identity matrix. Since the matrix C @ 12 is required 
further to be in SU(8), and since det(C @ 12) = (det C)2, C is shown to be subject to 

CpA:Evh = a,,, det(c,,) = fl. (7.14) 

The identity component of the group determined by (7.14) is, of course, SU(4), which we 
choose to take. Thus the whole group SU(8) reduces to the subgroup SU(4), the action 
of which is represented as unitary operators WF’ on S(E,,; I), where we have used C in- 

stead of C @J 12 for the sake of notational simplicity. Clearly, these Wl_“’ commute with 

U(‘), g E SU(2), so that the SU(4) acts on S(E,: 1) for all possible 1. Since S( En; I) is in R 
one-to-one correspondence with the eigenspace of the quantized SU (2) Kepler problem, 
we have the following theorem. 

Theorem 7.3. Each of the eigenspaces qf-’ S( E, ; 1) of the quantized SU (2) Kepler proh- 
lem admits a unitary representation of the symmetq group SU (4). 

In classical mechanics, we have already shown that the SU (2) Kepler problem admits 
the symmetry group SU(4), which acts on each energy manifold of negative energy [lo]. 
Theorem 7.3 is then a quantum version of the classical symmetry. 

In Appendix B, we give a basis of the Lie algebra su(4), Jjk and Q,, with j, k. n = 
0, 1, . . ,4. j < k, represented in the 8 x 8 matrix form. The commutation relations among 
them are calculated as 

IJij, JjkI = -Jik (i # j), 

1Ji.j. Jk/l = 0 (# i, j, k, 0, 
(7.15) 

1Qj. QkI = Jjk. 

l!jk. Qnl = &jnQk -&nQj (_i #k). 

We notice here that SU(4) Z Spin(6), which is shown in [25], for example, so that (7.15) 
is looked upon as the commutation relations of SO(~). Note also that the Jjk’s form a basis 
of the Lie algebra sp(2) 2 SO(~) of Sp(2). 

8. Generators of the symmetry group 

We have obtained in Section 7 the operators WF’ for the symmetry group SU (4), which 
act on the eigenspace S( E,) for the quantized conformal Kepler problem of negative energy. 
We denote by F(“) one of infinitesimal generators of W$’ on S(E,). Since WF’ and 

Uf) commute, one has Uf’F(“)Uf)-’ = F(“) for the infinitesimal generator ?“). If 
?“)‘s are put together (in n) to form an operator F^ (densely defined in the whole space 
L2(R8; 4r dx dy)), F^ will then satisfy 

u,&J;’ = F, g E SU(2). (8.1) 
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For operators F^ satisfying (8. l), we can define reduced operators 6 acting on fl through 

which will form infinitesimal generators of the symmetry group SU(4) for the quantized 
SU (2) Kepler problem of negative energy. 

Our task is then to find infinitesimal generators of I+$’ for C E SU(4). Incidentally, the 
previous article [24] of ours shows that such generators are given by 

p = h 
8 

c 
2i j,k=l 

FkjAkAJ* (8.3) 

where F = (Fij) E su(4) takes the matrix form given in Appendix B. If we take (Fij) to 
be a base matrix Q 1 given in Appendix B, the operator (8.3) is written out to give 

F*‘“‘=l _ 
4 ( a2 + a2 a2. I a2 -- 

axoayl axI aYo ax2ay3 8x3 ay2 

+bOyl - Xl YO + X2y3 - x3y2)h2 
> 

1 

where h = 4~/(n + 4). To form an operator F^ from F(“)‘s, we replace the number h2 
by -8g according to the relation H^ = -ih2 which holds on the eigenspace S(E,). As 
another example, we take F = JOI (see Appendix B). Then Eq. (8.3) results in the operator 

a a a a a a a a 
X’~-XO~+X3~-X2--y,-+yo--y3-+Y2_ 

, 
0 I 2 ax3 aye ayl ay2 ay3 

Factoring out $A in this operator, we find an angular momentum operator. Applying the 
same method to the other basis matrices of su(4) provides the infinitesimal generators 
(densely defined on the whole space L2(l@; 4r dx dy)) as follows: 

zjk=$Ljk (j,k=O ,..., 4), 

a2 + a2 + a2 + a2 _ _ 
axI ayl ax2 ay2 ax3ay3 

-WoYo + XlYl + x2y2 + x3y3)K 

a2 a2 + a2 a2 ___ 
ax2 aY3 3x3 ay2 

-2(xOyl - XlyO + X2y3 - X3y2)% 
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a2 a2 + a2 a2 
--- --- 

ax2aYo ax3aY1 axi aY3 

269 

(8.4) 

-2b0Y2 - x2yo + x3y1 - x,y3)HI, 

6,x-I --_ ( a2 a2 + a2 a2 ___ 
4 axoaY3 ax3aYo axI aY2 ax2aYI 1 

-%oy3 - x3yo + ~1~2 - x2ydH^, 

“=-; s+G+$+-&___---- c a2 a2 a2 a2 a2 a2 a2 

0 I 2 3 a$ ayf a$ a$ i 

4x0’ + x: + xi + x; - y; - y: - y; - y$i, 

where Ljk are the infinitesimal generators listed in Appendix A. These are symmetric 
operators on C,“(@) with respect to the inner product (5.2). It is straightforward to show 
that the operators (8.4) satisfy (8.1). 

The commutation relations among them are shown to be given by 

[Eij, rjk] = -izik 
(i # k), 

[Lij, zkl] = 0 (# i, j, k, 0, 

[Gj. 6k] = ii7jk(-22) (.i # k), 

[zjk, En] = i(sj,Ek - 8kn6j) (.i # k), 

(8.5) 

where i, j, k and n range over 0,. . . ,4. Now that we have found symmetry operators satis- 
fying (8. l), we are to reduce these operators to obtain symmetry operators for the quantized 
SU(2) Kepler problem. By using (2.10) and (6.8), we put (8.4) in the form 

which can be verified by straightforward but lengthy calculation. Applying (8.2)-(8.6) 
together with (3.4) and (3.6), we obtain the reduced operators 

[Ejk]l = ~(Wjvk-Wkvj+r2R(~,~)). 

@n]l = ; c (6knhVk + Vk[~kd) + +I, 
kfn 

(8.7) 



270 1: Iwai, ?: Sunako/Journal of Geometry and Physics 20 (1996) 250-272 

where [ .]l indicates the operator acting on cross sections in &I. The commutation relations 
that the symmetry operators (8.7) obey are the same as (8.5). We note further that the 
symmetry operators (8.7) apply for the quantized SU (2) Kepler problem of whole energies. 
Thus we have the following. 

Theorem 8.1. The SU(2)-invariant operators (8.4) for the quantized conformal Kepler 
problem are reduced to the symmetry operators (8.7) for the quantized SU(2) Keplerprob- 
lem (fi, gt). The [Zjk]t are the angular momentum operators and the [&]I the Runge- 
Lenz-like operators. These operatorsform the Lie algebra SO(~), e(5), orso( 1,5), according 
to whether the energy Et is negative, zero, or positive, where e(5) is the Lie algebra of the 
group E(5) of Euclidean motions in I@. 

Appendix A 

Linearly independent generators for Sp (2) : 

alax a/ax1 alax2 a/ax3 alay alay alay ajay 
LOI XI -x0 x3 -x2 -Y1 YO -Y3 y2 

Lo2 x2 -x3 -x0 XI -Y2 y3 yo -y1 

Lo3 x3 x2 -x1 -X0 -Y3 -Y2 Yl yo 

L12 -x3 -x2 X1 x0 -Y3 -Y2 Yl yo 

L23 -x1 X0 -x3 x2 -Yl YO -Y3 y2 

L31 -x2 x3 xo -x1 -Y2 Y3 YO -y1 

Lo4 yo y1 Y2 y3 -xo -x1 -x2 -x3 

L14 Yl -Y0 y3 -y2 x1 -xo x3 -x2 

L24 y2 -Y3 -Y0 Yl x2 -x3 -x0 Xl 

L34 Y3 y2 -Y1 -Y0 x3 x2 -x1 -xo 

Appendix B 

The bases of su (4): 

jck 

$412 0 W% - B1>~2 (-i/J2 - 83)k 

0 iB412 ($2 - 83112 Wo + A)12 

Wo + BI 112 W2 + 83) 12 -iS412 0 

C-$2 + 83)12 Wo - /A)12 0 -i/W2 
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I 

0 (-a02 +a31)12 WI412 ---a2412 

1 (a02 - a31)12 0 a2412 9412 

+z 
--(ro412 -a2412 0 (402 +@3l)l2 

a2412 -a0412 -(a02 +a31)12 0 I 

+; 

((2'01 - a23)12 (a03 -a12112 al412 

(a03 -a12)12 (-a01 +a23112 a3412 -a1412 

a1412 ff3412 -(a01 +a23)12 -(a03 +al2)12 

a3412 -al412 -(a03 +a12112 taOI +a23112 

where I2 is the 2 x 2 identity matrix. 
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